Colchicine induced intraneuronal free zinc accumulation and dentate granule cell degeneration.
نویسندگان
چکیده
Colchicine has been discovered to inhibit many inflammatory processes such as gout, familial Mediterranean fever, pericarditis and Behcet disease. Other than these beneficial anti-inflammatory effects, colchicine blocks microtubule-assisted axonal transport, which results in the selective loss of dentate granule cells of the hippocampus. The mechanism of the colchicine-induced dentate granule cell death and depletion of mossy fiber terminals still remains unclear. In the present study, we hypothesized that colchicine-induced dentate granule cell death may be caused by accumulation of labile intracellular zinc. 10 μg kg(-1) of colchicine was injected into the adult rat hippocampus and then brain sections were evaluated at 1 day or 1 week later. Neuronal cell death was evaluated by H&E staining or Fluoro-Jade B. Zinc accumulation and vesicular zinc were detected by N-(6-methoxy-8-quinolyl)-para-toluene sulfonamide (TSQ) staining. To test whether an extracellular zinc chelator can prevent this process, CaEDTA was injected into the hippocampus over a 5 min period with colchicine. To test whether other microtubule toxins also produce similar effects as colchicine, vincristine was injected into the hippocampus. The present study found that colchicine injection induced intracellular zinc accumulation in the dentate granule cells and depleted vesicular zinc from mossy fiber terminals. Injection of a zinc chelator, CaEDTA, did not block the zinc accumulation and neuronal death. Vincristine also produced intracellular zinc accumulation and neuronal death. These results suggest that colchicine-induced dentate granule cell death is caused by blocking axonal zinc flow and accumulation of intracellular labile zinc.
منابع مشابه
ZnT3 Gene Deletion Reduces Colchicine-Induced Dentate Granule Cell Degeneration
Our previous study demonstrated that colchicine-induced dentate granule cell death is caused by blocking axonal flow and the accumulation of intracellular zinc. Zinc is concentrated in the synaptic vesicles via zinc transporter 3 (ZnT3), which facilitates zinc transport from the cytosol into the synaptic vesicles. The aim of the present study was to identify the role of ZnT3 gene deletion on co...
متن کاملRole of Moringa Oleifera on Hippocampal Cell Morphology and Senile Plaque Formation in Colchicine Induced Experimental Rat Model of Alzeimer’s Disease
The present study was designed to undertaken the role of Moringa oleifera (MO) on hippocampal cell morphology and senile plaque formation in colchicine induced experimental rat model of Alzheimer’s disease (AD). Paraffin sections are stained with Haematoxylene eosine staining for cellular morphology, Cresyl fast violet for granular cell degeneration and disintegration at CA3 region of dentate g...
متن کاملCytoskeleton disruption causes apoptotic degeneration of dentate granule cells in hippocampal slice cultures.
Colchicine, a potent microtubule-depolymerizing agent, is well known to selectively kill dentate granule cells in the hippocampal formation in vivo. Using organotypic cultures of rat entorhino-hippocampal slices, we confirmed that in vitro exposure to 1 microM and 10 microM of colchicine reproduced a specific degeneration of the granule cells after 24 h. Similar results were obtained with other...
متن کاملDentate granule cells are essential for kainic acid-induced wet dog shakes but not for seizures.
The purpose of this study was to determine the role that dentate granule cells play in wet dog shakes (WDS), behavioral seizures, and hippocampal cell loss caused by systemic administration of kainic acid (KA). Rats were given bilateral injections of colchicine (COL) into the hippocampal formation to selectively lesion dentate granule cells. Two weeks later, they were injected subcutaneously wi...
متن کاملA role for mixed lineage kinases in granule cell apoptosis induced by cytoskeletal disruption.
Microtubule disruption by colchicine induces apoptosis in selected neuronal populations. However, little is known about the upstream death signalling events mediating the neurotoxicity. We investigated first whether colchicine-induced granule cell apoptosis activates the c-Jun N-terminal kinase (JNK) pathway. Cultured murine cerebellar granule cells were exposed to 1 microm colchicine for 24 h....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Metallomics : integrated biometal science
دوره 6 8 شماره
صفحات -
تاریخ انتشار 2014